
E Q U A L - S T R E N G T H  H O L E  I N  A P L A T E  

I N  AN I N H O M O G E N E O U S  S T R E S S  S T A T E  

N. I .  O s t r o s a b l i n  UDC 539.3 

Let the s ta te  of s t r e s s  in a continuous plate be defined by K o l o s o v -  Muskhelishvili  functions [1]: 

t 
((~ + ~)  = d) 0 (z) + O0 (z), (1) 

(z~ - ~ )  + ~ = zr (~) + ~ (~), 

! ? , t  
where  ~0 (z) = q~0 (z),,I' 0 (z) = ~'0 (z) a re  known functions of the complex va r i ab le  z =x  +iy  holomorphic  in the region 
of the plate that  sa t i s fy  given conditions at  the boundary of the plate.  

In the pilate we make a hole with edge L to which we apply constant no rma l  and tangent ia l  s t r e s s e s :  

(r. = p ,  T.~ = %  z ~ L ,  (2) 

where (n, t) i s  a coordinate sy s t em linked to the normal  and tangent to the contour L and oriented in the same 
way as the (x, y) coordinate sys t em.  On t r a v e r s i n g  L, the region occupied by the m a t e r i a l  r ema ins  on the left. 
The re  is  s t r e s s  red is t r ibu t ion  on account of the hole in the plate.  The s t r e s s  s ta te  in the plate with the hole 
may  be r ep re sen ted  via  the functions 

o(z) = O0(z) + o~(z), "z(z) = ~(z)  + q'~(z), (3) 

where  ~l (z),,I':t (z) cha rac t e r i ze  the addit ional s ta te  of s t r e s s  caused by the hole. These  functions must  be such 
that  conditions (2) a r e  met  on L, while the s t r e s s e s  become those of (1) at the outer  boundary of the plate.  

We solw~ the p r o b l e m  approx ima te ly  on the assumpt ion  that the d imensions  of the plate a re  much l a r g e r  
than those  of the hole. Then we get a p r o b l e m  with ze ro  conditions at the infinitely r emote  edge for  the addi- 
t ional  s t r e s s e s .  

Apar t  f r o m  conditions [2] we speci fy  fu r the r  that  the s t r e s s  a t on L be constant (an equa l - s t r eng th  hole 

[21): 

~t = q = const, z ~ L. (4) 

The p r o b l e m  may not have a solution for  a given L, so L is not specif ied in advance but is chosen such as to 
mee t  (4). Such holes may  be opt imal  in the sense  of min imal  s t r e s s  concentrat ion [3-6]. 

The pr inc ipa l  v e c t o r  of (2) for  the ex te rna l  fo rces  applied to L is zero,  and the functions ~0(z),,I'0(z) a re  
ho lomorphic  in the continuous plate,  so  the functions ~t(z) ,  'l~l(z)have the following o r d e r  [1] n e a r  an infinitely 
r e m o t e  point: 

r  = o(z-~), ~ ( z )  = O(z-'-). (5) 

On L we have [1] 

U2(~x -~ ~j) = O(z) -4- O('--z) = 1/2(~ a Jr Or), z ~ L, 1/2(~y --  ~x) -~ iz~ 

= zO ' ( z )  + Yr(z) ----- - -  [1/2(c~t - -  on) + ixnt ]d'z/dz. 

We substi tute (2)-(4) into these equations and get the following boundary conditions for  d~l(z),'~'l(z): 

01(z  ) -'}'- ~ ( z )  = 1/~(p 4- q) __ [r ) ~- (I)0(z)], 

zO;  (z) ~. T~ (z) = -:- o:d'~/dz - -  [zO~ (z) + T O (z)], z ~ L, 

where  a =l /2(q_p)  + i t .  

(6) 
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Let~0(z), ~0(z) take the fo rm 

k=O h=O 

where the coefficients are assumed to be known constants. We take the functions in the form of (7) to obtain 
solutions of pract ica l  in teres t  [7l. 

We pe r fo rm conformal mapping with the functions 

z = co) (;) = c; ~" c -~ = (8) ~ , c I c l>O,  c0=~, c1=0 
n=O 

for the region [ ~ [ > 1 into an infinite region outside L. It can be assumed in (8) that c = Ic [ > 0, ci =0, since 
one can always make the substitution 

z --- eiarge(Zl ~- IClC~), 

which amounts to rotating the coordinate sys t em through the angle arg c and then t r ans fe r r ing  the origin to the 
point [c I el. We put 

dh(z) = CJc~(;)]  = (lh(;), ~(z) = ~jc~(~)l  = ~ ( ; ) ,  

and get that ~1(~ ), ~l(~) in the region of an infinitely remote point have the following orders  on the bfisis of (5) 
and (8): 

0 ~ o (~)1(~) = ( ; - ' ) ,  1])'1(;) = O ( ; - - ' ) .  (9)  

We assume that o~+~ (t) sat isf ies  Gelderts  condition, and then [8] 

r = r (10) 

where the plus denotes the l imiting values of the function as  g tends f r o m t h e  region I~1 > 1 to the points on 
unit circle It I =1. 

We now use (7), (8), and (10) to rewri te  (6) for  ~1(~), ~1(~) (the plus sign is omitted) as 

] aPl(t)+ Opt(t ) = y ( p  + q) -- r (t) + ~ho)h(t) = ](t), 
(11) 

+ q~x ( t )= [ ( t )+  (t)] o(t) ap: ( t ) o "  (t)t ' [~-'~(t) ~ kaho) k-x ~ ~h(o a ---- h(t), It I=  l ,  
o '  (t) r (t) h=~ h=o 

where a k =  akck; flk=bkck; k=0,  m; we find the representa t ion ofwk(~) for  large I~ [, and on the basis of (8) get 

--~ C - n  __ ~ C ~ ) ~ - n  ~(~) ~n c(~) ~ . -n  

where the coefficients c (k) are  determined [9] f rom recurrence formulas:  

n 
A(~) ~ ~, C ?  ) __~_~ ~ �9 ( 1 3 )  ~o --~o [] (k + t) -- nl _(a) --- ~- C:jCn_j, rt -~  I, c o .  "% j~---1 

We write out the combination 

h (t):(o' (t)--(o"(t)/' (t} = ~r (t) t 2 -- ~ k~h(o ~ (0 o' (t) t ~ -- ~ ~ko)k(t)o'(t) 
h= l  h ~0 

= - ~0(t) + ~ = , . ~ - 4 - ~  ~ - k = o  o~+1 (0 = g' (0. 

(14) 

The boundary-value problem of (9) and (11) has been considered elsewhere [10]; we use the resul ts  of 
[10] with (12) and (14) to get a solution to the boundary-value problem of (11) (motion around the circle It I is 
clockwise): 

272 



= ~ f f(t) dt = - -  a~ (o~(~ ) - -~c (~ ) r  n 
th=l L n=o J h=l  n = l  

= ~  - - x  -+,,_.,--,:~--,,,=, 7 ~o,:+~L ~~ ,,~ <"<+'-"~-. Jl 

= - 7 -  ~, ,~ + ,  ~ ,  ~,,+,. (k + t) <,:/~ (~1 ~' (:) - ,,:,"~ -<-,,+,-,,, j ,  

(15) 

(: 6) 

Then f r o m  the f i r s t  condition of (9) we must  have 

$(p + q)- ~ (~4 ~> + 17<: ,) = o; 
M - O  

(17) 

m 

O~hCh@ 1 ~- ~h~h_l 
h = l  h = l  

(i8) 

We see f r om (16) that the second condition of (9) is obeyed, F r o m  (16) we have 

~ ( & o _ ' ~  k=\ "+' , ,x~+,.)  . "  o "+'- "x 
, r , ( ~ ) = -  I~<o ~ ( ~ ) + - ~  ~ ~ , ~  = :~+~ ~ - 7 _ . ~  ~+,_~ ~. (19) 

We de te rmine  the constant q f r o m  (17), while (17) gives that the constant ~ is 

m 
l 

= : ( q -  p) + i~ = . ~  ( ~ 4  ~> + :~i~>) - ;  + ~. 
h = 0  

The function c~(~) sa t isf ies  the following functional equation [10]: 

/ / - ( ~ )  + o:,(lt~)F-(~) = O, I~1 < l ,  

where the functions H -  ([), F -  (~) a re  defined in the region [~ [ <1 by the formulas  

t d i g (t) A 

.,/o[<o(:)-4] + z 

"" 13 ~'+' ' [ f l ,~ , %] 
~o ~ / <~ t c / - 7 - - ~ j  

~, ~.o:r (_~) (_{__)f ~+,~ o ~..+. 
- -  n = l  h ~ O  n = l  

= ~  f f ( t )  d t = ~ (  f /(t) dt)=---~-CP~(~)d - -  '1 t7- (~) 2~i d t - ~ ~ t z~i  j t - 

(~h Z (h) ~n-1 ~), 1 

(20) 

(21) 
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where F-(O) =0, according to (18). We substitute these  functions into (21) to get 

X Ph "~ ne!~+~) ~-x k~ h .i(k+l) "* h+l--n 
+ k + t ~  "**-'~ - -  T ' -4T ~ = 0 .  

h=O n = l  h=- I  n = l  

We introduce the symbols 

A,, = n ~kch-n, n -~ t ,  m, 

= '~h+x-n, n = l , m + l ,  

kctu ~(h+x) 
Dn = n ~"h+x-n,  n = t, m '+ 1 

k ~ n - t  

(22) 

and replace g by l / g ,  while all the pa ramete r s  are replaced by the conjugate ones, which t r ans fo rms  the equa- 
t ion to 

, ,= ,  +~,-~-)0'(~;) + X  ~-~ - D ~ - '  =o, I~i>t. 
~'t ==1. 

(23) 

I f a ~ 0 ,  we put 

"~0 ~ 0~ 

t s / A~ ,, ~,, 1') 

D1 , Dn _~ 
Y* = e~ - -  ~ Y" = - -  --=-'ok n = 2, m 1, 

7_~ = --=--, n=: l , m + l ,  
05 

and rewri te  (23) as 

m+l 
[o,(~) e*(:)] ' = Z ~A~- '~  *(:). 

n = - - ( m + l )  

The fimctions eA(~), e -A(g) can be represented  as Lorant  se r ies  in the region 0 < ] g[< .o. 
co oo 

eA(:-)= ~ ~t,,~ n, e--A(~)= ~ ~,,~', 

where the coefficients are  defined by the formulas  of [11] (the motion around the circle  ] [ ] =p is counter-  
clockwise): 

(24) 
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I f eg(~) ~ " =  2~--~ ~,----yd~, O < 9 < c v ,  ) . ~ = ~ ( - - ~ ' ) ,  n = - - o o ,  c~. 
I~l=p 

Then the genera l  solution to (24) is wri t ten  as 

L k h = - ( m ~ - l )  . n - - - ~  \ k=--(m-}-l) 
n ~ o  

, ] 
YhO.-~) ~ § 6 e -~(:), (25) 

where 5 is a constant of integration.  

It follows f rom (25) that w(D has the f o r m  of (8) if we have the following: 
,.+1 ~ / ,~+. ) 
2 y.p._k=O, + 1  -~m ,~,.s-~ ~.-~+6~.o=0, 

h=--(m-[-l) s=--oo \ h = - - ( - b l )  
s#0  

s =--~ "~ \ h ~  --(re+l) 
s t 0  

sv~o 

where the coefficients  of the w(Dof (8) a re  

[ m + l  X 

~=--oo \ k=--(m-]-l) 
s4-0 

There fo re ,  the function ~o(~) will have the fo rm  of (8) i f  the p a r a m e t e r s  of the p rob lem are  such that (26) is 
obeyed. As co (~)sat isf ies  (21) [10], we have that condition (18) is obeyed. Then the coefficients On+i, n = l ,  ~ 
are  defined by (27). As for  m - 2  the right side of (27) contains the coefficients c 2 . . . . .  era, the f i r s t  m - 1  r e l a -  
tions of (27) will be a sys t em of equations for  the coefficients c 2 . . . . .  c m. 

If we substi tute (8) into (23) and compare  coefficients fo r  ident ical  powers of ~, we get the following sy s -  
t em  of equations for  the Cn: 

m + l - - n  

c jA j+ . -1  - -  Dn = O, n = l ,  ra --}- i; 

~ . A j c j + I  +Alco = O, 
J = l  

m n + l g m  

~- A jc .+ l  i j -i- a n c . + l  ~ ~ Aic,,+l_j ~- ~9~ O, n := l, m-~ i, 
) :, 1 J ,1 

m m 

= m + 2 ,  oo. ~_~ A;c,,+11_ j + ~nc.~+l + ~ A j c .+ l_  j O, n = 
j -1  j -1  

(28} 

{2 9) 

The f o r m  of (21) implies ,  which can be checked direct ly ,  that equations (28) are  obeyed identically.  The f i r s t  
equation in (29) coincides with (18), as can be checked by using (13) and (22). There fo re ,  the coefficients in 
the mapping function w (~) should sa t is fy  (29), where or, Aj, Bj are  defined by (20) and (22). 

A check shows that the Cn+ 1 defined by (27) sa t is fy  (29) if (26) is obeyed up to n =m, whereupon the other  
re la t ions in (26) will be obeyed. There fo re ,  i f  the re  is to be an equal -s t rength  hole for  ar  we must specify 
that the f i r s t  m +2  re la t ions  in (26) are  obeyed. One of these re la t ions  defines the constant 5. 

If 

then oJ(~) is found f rom (23). The coeff icients  in the s e r i e s  expansion may be found f ro m  (29), with the initial 
coefficients e 0 . . . . . .  cm re la ted by (30). 
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There fo re ,  the boundary-va lue  p r o b l e m  of (9) and (11) has  been solved: the functions ~bl(~) , ~1(~) a re  ex-  
p r e s s e d  by (15) and (19), while the coeff icients  in w(~) a re  defined by (27) when the m + 2  f i r s t  conditions in (26) 
a re  obeyed or  e l se  by Eqs.  (29) and (30). For  the solution to be comple te  we need to impose  constants  
on the Cn such that  the w (~) of (8) will  be of one sheet  in the region of I~ t> 1. It can be shown that  for  this  to 
be so in the region Itl  >-- p > l  it is  sufficient  to mee t  the condition 

oo 

We give some p a r t i c u l a r  cases .  F o r  m = l  we have f r o m  (13), (20), and (22) that  

A1 = eel, B1 = rio, B= = ~l, Dl = O, D.2 = ai, 

ct = ~ Z o + a o - - p  + i ~ ,  7o = 0 , 7 i =  t, 

v-,. = - ~ , ~ ,  ~-, =-~0/-~, ~-~. = ~ .  

The values  of/~n, kn are  

k i ,i) -,,( 
where  Jn(  ) a re  Besse l  functions of o rde r  n [11]. The coeff icients  Cn+ 1 a re  given by 

c "+ i  = ~ T 7 ,~ -~ ,  ~,-,,-~ -}- ~ , - , , ,  n = 1, oo, 
~ = - ~  \ h = - - 2  ] 
, ~ 0  

(31) 

where  the given p a r a m e t e r s  and constant 5 a re  such that  

s # O  
(32) 

is  obeyed. If e =0, then r ( a ~ , - -  ~--0/~ ~- - -  ~-,/~3) ( e l + ~ l / ~ 2 ) - l ;  i f  or 1 =0, then (32) is obeyed, with 5=0,  and 
f r o m  (31) we get 

c~ = --J~o/a, c3 = - -~1/2=,  c,,+l = O, n = 3, oo, 

i .e. ,  

e~(~) -- ~ --~0/Tz~ --  ~ / 2 ~  =. 

This  function is of one sheet  in the reg ion  I~ I > 1, i f  the p a r a m e t e r s  a re  such that  

~ol + iS,.l~ L< lao + ~ o  - ..,-, - J.,i. 

(33) 

(34) 

The above solutions were  not obtained in [2], where  the case  m = l  was considered.  The solution of [2] 
subject  to condition (18) follows f r o m  (31) o r  f r o m  (29) if  we put cn+l =0, n=2 ,  ~, where  we get 

~_ =-~,.,',~i = -~0t~ = - -T , ,_ , '~ . , .  

This  shows that  an equa l - s t r eng th  hole in that  case  is a degenera te  e l l ipse,  not s imply  an e l l ipse  [2, 12], and 
this hole does not a l t e r  the ini t ia l  s ta te  of s t r e s s ,  s ince the functions @l(~), ~ l (~ )  will  be zero .  

F igures  1-3 show the equa l - s t r eng th  holes cor responding  to (33) for  ce r ta in  values  of the p a r a m e t e r s .  
We wri te  the coeff icients  c 2 and c 3 in the exponential  f o r m  

c~ = I c~ I e ~ ' ,  c. = I~. I ? '% 

Figure  1 shows the L fo r  the following values  of the p a r a m e t e r s :  c 2 =0, I c 31 =1/2;  1 /3;  1/5 fo r  curves  1-3 
respec t ive ly ,  where  z 2 = (z/c)e-iq~/8. F o r  c 2 =0, the equa l - s t r eng th  holes  a re  hypotrochoids.  The p a r a m e t e r s  
in Fig. 2 a re  as follows: e2/2  =~3/3,  Ic21 =2 I%1 =1/2 (curve 1), Ic21 = Ic31 =1/3 (curve 2), and It21 =1/3, Ic31 = 
1/5 (curve 3), where  z 2 =(z/c)e-iCP2/2. The p a r a m e t e r s  in Fig. 3 a re  Ic21 =2 te31 = 1/2, ~9. =0, cp3=Tr/6 (curve 
1), ~v 2 =~r/6, 93 =0 (curve 2). The holes with nodal points co r respond  to p a r a m e t e r s  fo r  which the sign of equali ty 
appl ies  in (34). 
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Equations (26) a re  obeyed ident ical ly i f ~ k = 0 ,  k - - l ,  m, and 5 =0; then (27) becomes  as follows on the 

bas i s  of (22) :for the Bn: 

c~'+x = --  ~ "T"+-T ~+'-~' n = t, m + t, c,,+l = O, n = m + 2, c~. 
k=n--i 

(35) 

F o r  n--m,  m + l ,  we have f r o m  (35) with (13) that  

Cm+l = - -~ .~- l lGn,  c~.+~ = --~,do~(m + l). 

F o r  m->2 the o ther  exp re s s ions  in (35) will consti tute a s y s t e m  of equations for  the coefficients  c 2 . . . . .  Cm; for  
example ,  for  m = 3  the equations a r e  

. . . .  ) 
~ = - = (~0 + ~ + ~ ) ,  ~ = - T ~ + ~ ' 

f r o m  which we get 

where  5k= flk/O~; k=0.3 .  F o r  m >  3 the s y s t e m  of (35) becomes  nonl inear  and will have s e v e r a l  solutions,  i .e. ,  
t he r e  may be s e v e r a l  equa l - s t r eng th  holes  fo r  the given p a r a m e t e r s .  It may  be that  the spec i f ic ia t ions  a t  ~o(~) 
is on one sheet  and will rule out some of the solutions.  

Ifo~ k =0, k = l ,  m, we see  f r o m  (15) that@l(~) is zero,  i .e. ,  the hole in that case  is  not only of equal  

s t rength  but is a lso  ha rmon ic  [13]. 

T h e r e f o r e ,  a dis t inct ion of the p r e s en t  study f r o m  [13] is that we have defined equa l - s t r eng th  holes in a 
plate with an inhomogeneous ini t ial  s t r e s s  dis tr ibut ion.  These  holes can a lso  be harmonic .  
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